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A model of thermomechanic behavior of a polymer upon its formation in a crystallization process is proposed. 

Based on methods of nonequilibrium thermodynamics governing relationships are obtained which make it 

possible to establish the dependence of the final degree of crystaUicity of the material on the "history' of the 

crystallization process and to explain the mechanism of formation of the remanent stresses in a polymer 

article. 

i. The distinctive features of the physical properties of polymer materials are determined by the presence 

of complex polymer structures. In a number of cases formation of the material proceeds upon the transition of the 

polymer system from the liquid to the solid state. In this case the properties of the polymer are determined not 

only by the chemical structure of its molecules but by the formation conditions as well. The most characteristic in 
this regard is nonisothermic crystallization of a polymer from the melt. Formation of the dispersed system proceeeds 
as a result of the phase transition of the amorphous polymer from the viscous-flow state to the crystalline state. 

The classical theory of phase transformations deals with the equilibrium between the initial and the newly 
created phases at the temperature which corresponds, in fact, to the completion of the process. However, at finite 

cooling rates formation of the new phase is possible solely upon a certain deviation from the equilibrium conditions. 

Such a thermodynamically nonequilibrated state can persist for a sufficiently long time since the characteristic 

formation time of the newly created phase upon polymer crystallization is as long as 101-105 sec. 

Presently, the greatest amount of information on the thermodynamics, kinetics, and strucure of crystallized 

polymers has been gathered, which makes it possible to reveal the distinctive features of the phase transition of 

the 1st kind in polymers on the basis of a detailed investigation of the structure of macromolecules. These 

approaches explain many of the qualitative regularities in polymer crystallization; however, they prove to be rather 

cumbersome when applied to the solution of particular technological problems. Therefore, in actual practice one is 

forced to use rather simplified models of the process, taking the processes of formation of physicochemical 
parameters of the material and the strained-deformed polymer state to be, as a whole, independent of kinetic 

regularities and heat transfer upon crystallization of melts. 

This means, in fact, that the traditional methods describe the crystallization process in the vicinity of the 
equilibrium state, and various artificial methods should be applied to account for the actual nonequilibrium 

conditions. In a series of cases such simplified schemes are justified since they make it possible to model the 

technological process within some narrow range of variation of parameters. Nonetheless, a more adequate 

description of what actually takes place requires taking into account the "history" of the crystallization process and 
the relationship between the structural transformations and macroscopic properties of the material obtained. The 
present work is devoted to the study of this problem. 

2. Let us consider the process of nonisothermic bulk crystallization of a polymer material. Using the 
confinuality hypothesis and the principle of the equivalent homogeneity [ 1, 2 ], we substitute the polymer system 
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being crystallized by an effective continuous medium. This will make it possible to apply conventional laws of 

continual mechanics hs well as methods of thermodynamics of continuous media with intrinsic parameters of state 

[ 3 ] .  

Let us select some small elementary volume AV of the effective continuous medium. The state of the matter 

within this volume is determined by kinematic (u, v, and 4) and internal (0, p, e~ a ̂, and ~/) parameters, by the 

parameter of the energy state U * or z, and, finally, by the internal parameters of state Zi that reflect evolution of 

the structure of the system upon its transition from liquid to the solid state. 

Variation of the parameter Zi is given by the corresponding evolution equation: 

Zi = W i ( ~ ,  O, Zi) .  (1) 

The dot denotes the time derivative. The functions qJi are formed based on theoretical or experimental studies. 

These functions relate microstructural phenomena and macroscale effects�9 

The above variables are dependent quantities as a result of the fundamental principle of the mechanics of 

continuous medium, namely, the principle of macroscopic determinability [4 ] (or the principle of determinism [1 ]), 

which states that any thermodynamic macroscopic quantity in the material particle under consideration is 

determined at the instant t by the process: ~'(r); 0(v), Zi(v), r E [t0,t], and by the corresponding initial values at t 

=~0" 
Let us make use of the basic laws of thermodynamics in the form of the entropy balance [4 ]: 

and the dissipation inequality 

p O i I  = - divq + W* (2) 

= ^ ^ (u* (3) a--~ - p  - 0 / / )  >_ 0.  

Here .. denotes the double scalar product of tensors. The heat flux vector q is connected with the temperature 

gradient by the Fourier law: 

q V0 (4) 

We use the specific free enthalpy (the Gibbs thermodynamic function) as a measure of the energy state: 

^ U *  1 ^ ^ 0)  z ( a ,  0, Xi) = 

The inequality (3) can be transformed as follows in terms of (5): 

w*= " ^ 0) - a  . . e - p  (~ + ~/ _>0. 

Substituting the complete time derivative of z, namely, ~ = Oz/O3. .  ~ + (Oz/Orl)i 1 + (Oz /~ i )~ i ,  into this inequality 

we obtain: 

. . . . . . .  P - - Z i  >-- O .  
oO oXi 

Here and in what follows summation is performed over the repeated indices. The relationships that hold 

for both reversible and irreversible processes stem from this expression: 

Oz Oz (6) I x  

e = - p  ^ ,  r I = - - -  
Oa O0 

We should recall that a reversible process, by definition, does not lead to energy dissipation: W* - 0. 
Irreversible energy dissipation is connected in the case under consideration with the change in the degree of 

crystallicity of the substance: 
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O Z  , 
"W* = -- p ~ Z i  -- O.  (7) oXi 

In addition, variation of state within the particle obeys the conservation laws for mass and momentum: 

I . ^ (8) 
~ p  + d i v v = 0 ,  d i v a + p F = p ~ r  

In the case of the crystallization process inertial forces p~r can be neglected. 

Defining the total time derivative of the first of the expressions of (6) we obtain an evolution equation for 

the tensor of the total deformation: 

. 3  e = H .  + ~ O + X  i Z i ,  (9) 

0 2z ^ 0 2z ^ 0 2z 
H =  - p - -  a = - p - - ,  X i = - p -  

I x '  A ' 

03 | o~ 0300 o~ozi 

where | denotes the tensor product. 

Using the first of the expressions of (6), the energy conservation law (2), and the Fourier law (4), we can 

write an evolution equation for the temperature (the generalized heat conduction equation) 

p cO = v (~'.v0) - 03 . .o  - p ~ - ~  z - 0~0 zi,  c = - O - -  02z (10) 
002 �9 

It is evident that in addition to heat conduction, additional heat sources do exist, such as the effect of stress 

and energy dissipation upon variation of structure (the generalized heat conduction equation). In order to use the 

physical Eq. (9) and the heat conduction Eq. (10) one should specify the functions W i and z related by the 

thermodynamic inequality (7). 

The equations obtained are highly general and make it possible to describe diversified processes of 

deformation and structural variations of polymer systems. Nevertheless, they should be specified in more detail 

based on additional hypotheses. 

First of all, in the present work we restrict ourselves to a single intrinsic parameter of state Z that will have 

the meaning of the volume fraction of the crystalline phase of the substance within the elementary volume AV of 

the polymer system. It is clear that this integral parameter bears minimum information on the polymer structure. 
Various approaches exist for determination of the form of the dependence z = z(3, 0, •) (see, e.g., [5 ]). 

Following Coleman and Gurtin [3 ], we consider the locus ;t* --X( 3, 0) in the state space (3, 0, Z) which is obtained 

in an infinitely slow (equilibrium) crystallization process. This locus is a surface of the equilibrium behavior in the 

state space on which the condition ~ = qJ(a, r/, Z (a, r/)) = 0 is satisfied. If now we are in the vicinity of this 

equ i l ib r ium curve at  f ixed  3 a n d  0 t h e n  it fol lows f rom the  d i s s ipa t ion  i nequa l i t y  t h a t  -p~  > 0 or 

z( erA, ~/, Z*) -< Z( 3, 7/, Z) for all Z in the vicinity of Z*. This means that the maximum value of the free enthalpy z is 

attained on the equilibrium curve and, consequently: 

OZ 1,, (1t) 

For the states in the vicinity of the equilibrium curve the function z can be represented in the form of an 
expansion: 

- p z ( 3 ,  o,  z ) = Z l  ( 3 ,  o ,  z * ) + f ( 3 ,  e ,  z*) - ;:* (0)) 2 �9 (12) 

The function z characterizes the energy state of the system in the equilibrium state and therefore can be specified 
in the conventional form, for example [6 ]: 

415 



1 ^ ~I*. ^ .a +pc*O (ln 0 - 1). (13) z 1 -- -~o'.. "0 + 0~*" A 

The physical meaning of the second term in the right-hand part of expansion (12) consists in the energy 
dissipation conditioned by the nonequilibrium crystallization process. 

The following assumptions are connected immediately with the distinctive features of the crystallization 

process at low pressures. First, let us come in the unknown function f of the stress tensor ~ to the mean pressure 

p, i.e., we neglect the effect of the shear component of the stress tensor on deformations resulting from the crys- 

tallization process, compared to the effect of pressure. Second, we will consider the surface of the equilibrium 

behavior to be pressure-independent at relatively low pressures: Z* =Z(0) �9 Third, we consider in what follows the 

special isotropic version of the model: 

�9 1 1 (  1 1 ) * * * =  * (14) 
Hijkl  = 2 ~  5ikOlk -- -3 2G* 3K* •ijSkl' aij = a c~ij , Ir tr 5ij .  

Based on the assumptions made and relationships (14), the function of the specific free enthalpy takes the 

form: 

- p z  ( a ,  0 ,  Z) = 2 ~ -  + 2G* + 30a*p + pc*O (ln 0 - 1) + f (p, 0) (Z - X * )  2 . (15) 

Using Eq. (15) and keeping terms of up to the 2nd order, we obtain governing relationships of the type of 

Eq. (9), which we write for the spherical and deviator parts (e = e+eI,  a = S+p/): 

1 . ^. 1 ^. 2 O f ( z _ Z , ) .  (16) 
k =-~--g p + aO + l ~ ,  e =~--~ S , k =-~ Op 

The expressions for the nonequilibrium parameters K, G, and a possess the following form which is 

determined by the equilibrium values and the current degree of crystallicity: 

1 1 02f 1 1 - / r  * + - ( z - x * ) 2  - a *  
K Op 2 ' G ' 

1 oZf 2 Of o~* (17) 
= + opo---6 ( z  - x*)  - ( z  - x*) oo �9 

The generalized heat conduction equation also retains its form, but with the last term transformed: 

[( ) pcO=V(x.vo)-3aob+Q2, Q=2 f-00  �9 (18) 

The theory provides the expression for the heat source conditioned by crystallization. It is sufficient that 

the quantity Q be a variable, the first term in Q being the nonequilibrium contribution, the second term being the 

heat release in the equilibrium process. 
3. The next step towards specifying the governing equations is connected with the unknown function L A 

structural approach based on physical concepts of the polymer structure and the crystallization process can be used 

to determine this function. In the present work we restrict ourselves to the phenomenological approach. 

Let us formulate the basic principles of the theory. 
A. For infinitely slow (equilibrium) crystallization processes the rate of heat release ~ is proportional to the 

growth rate of the crystalline phase )) with the proportionality coefficient Qeq: 

= Q.eq2. (19) 

The given concept is widely used in models, e.g., in [7 ], where it is extended to arbitrary processes. 
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Fig. 1. Phase trajectories of nonequilibrium crystallization process in the 

space of variables Z, 0 and q, O. 

Comparison of Eqs. (18) and Eq. (19) for equilibrium processes yields an expression for determination of 

the unknown function: 

1 ( )1 
f ---- "2 Qeq Q-~- (20) 

B. Upon cooling at an arbitrary rate to a certain temperature 01 > 0g the total heat release is a constant at 

t--, oo due to the phase transition; this constant depends only on temperature 01: ql = q*(01), i.e., in the space of 

variables q, 0 the existence is postulated of a unique equilibrium curve q = q*(O) on which the process is completed 

irrespectively of its trajectory q (0). 

The given concept is also assumed inexplicitly in the known models, e.g., in [7 ], where the heat release is 

identified, in fact, with the change in the degree of crystallicity. 

What consequences stem from these concepts? 

First, using Eq. (20) we determine the relationship between the rate of the heat release and the rate of 

variation in the degree of crystallicity 

( /=  ~ = QeqA (Z, O) Z ,  

I1-1 ] A ( Z , 0 ) = I +  Q 2 + 0  ~ ( Z - Z * )  (21) 
00 002 " 

According to the first postulate, the unique curve q*(O) = Qeo)(,*(O) corresponds to the curve z*(O) in the space q, 0. 

Deviations from the nonequilibrium state are included in the second term in the right-hand part of the expression 
for A(Z, 0). 

Second, integrating the equation q = QZ over time from to to t --, ~ we obtain an equation for determination 

of the final degree of crystallicity Zf: 

.~ xf (22) 
q* (01) = Qxdt = f Qd Z.  

t o o 

Equation (22) is one of the basic results of the theory proposed: the final degree of crystallicity Xr upon 

approaching the designated temperature 01 > 0g depends on the trajectory of the crystallization process in the space 
Z, 0. Indeed, since the left-hand part of the equation is a constant, whereas the expression Q under  the integral 

depends on the difference Z - Z* (on the degree of deviation of the process from the equilibrium curve in the space 
Z, 0), the value of Xf is process-dependent. 

Analysis of the expression for A(Z, 0) shows that A _ 1 in the crystallization process, whereas A = 1 

corresponds to the equilibrium process. Therefore the following statement holds: among all trajectories of crystal- 

lization processes in the space Z, 0 the maximum degree of crystallicity is achieved in the equilibrium process upon 
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approaching the designated temperature 01 > 0g: max{zf} = %*. The physical meaning of this result lies in the fact 

that the "closest packing of macromolecules in the crystalline phase" is achieved, all other factors being the same, 

in the infinitely slow (equilibrium) process (see Fig. 1). Proceeding of the process along the differing trajectories 
1 and 2 in the space %, 0 leads to different final degrees of crystallicity Z~ > Zf z. As is clear from Fig. 1 (curve 3), 

the most nonequilibrium process is the crystallization process under isothermic conditions when temperature 01 is 

achieved by such fast cooling that the crystalline phase has no time to be created at intermediate temperatures 

01 < 0 < 01i m. The minimum possible value min{zf} = Z  m corresponds to this regime. 

In addition, trajectories can exist which differ in the space %, 0 but lead to one and the same value of %f. 

Most likely, there are infinitely many trajectories of the type for any specified value of %m < %f < Z*. All these 
trajectories are equivalent in the sense of the integral estimate of the degree of the deviation from the equilibrium 

state. 
4. Particular experimental results and calculations based on the theory proposed will be presented in 

forthcoming communications. Here we dwell on one more fundamental question. 
The theory predicts the effect of the history of the process on the final degree of crystallicity. This result 

explains easily the mechanism of formation of the remanent stresses in the process of crystallization of massive 

bodies. Cooling of internal points of the body proceeds as a result of heat conduction and heat transfer across the 

outer walls. In this case the cooling rate and, consequently, trajectories in the space Z, 0 differ for internal and 

near-surface particles of the polymer system: the crystallization process for internal points is closer to the 

equilibrium one than that for the near-surface points. Therefore, the final degree of crystallicity and, consequently, 

shrinking of the internal layers are greater than that of the external ones. This leads to remanent stretching stresses 

and possible disruption of continuality (disintegration). 

N O T A T I O N  

u, translation vector; v, velocity vector; i,, acceleration vector; 0, absolute temperature; p, density; c, specific 

heat capacity; e", deformation tensor; a ~, strain tensor; ~/, specific enthropy; U *, internal energy; z, specific free 

enthalpy; Zi, internal parameters of state; t, time; ~q, heat flux vector; x, matrix of heat conduction coefficients; 

W*, energy dissipation; F, vector of mass forces; H, the 4th rank tensor of elastic pliabilities; ~', matrix of heat 
~ .  / , , .  . 

expansion coefficients; X i, tensor of contribution of structural variations to deformation; H *, a , c ,  G*, K*, 
functions of equilibrium value %*; p, mean pressure; e ~, deviator of the tensor of de~rmations; e, spherical part of 

the deformation tensor; S, deviator of the tensor of stresses; K, volume modulus; 1, unity tensor; Q, enthalpy of 

the crystallization process; Qeq, enthalpy of the equilibrium crystallization process; 0g, glass transition temperature; 

z*(O), the curve obtained in the equilibrium crystallization process; %f, final degree of crystallicity. 
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